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1. Objectives 

The main objective of this study is to examine coherent quantum effects, such as 

Rabi oscillations and quantum entanglement in optical spectra of wide-band-gap 

materials, and to determine the feasibility of fast optical control of quantum states 

in gallium nitride (GaN) and zinc oxide (ZnO) heterostructures. Because of much 

stronger exciton-photon interaction in these materials as compared to gallium 

arsenide (GaAs), it is possible to realize the strong coupling regime at room 

temperature. We perform an experimental and theoretical study on the dephasing 

processes in available nitride and zinc oxide materials. This will allow us to take 

advantage of their unique properties for observing coherent quantum effects at 

temperatures higher than the cryogenic, at liquid nitrogen temperature and higher. 

This is a necessary work toward coherent optical control of quantum states at 

higher temperatures, with ultimately room-temperature coherent control. 

1.1 Approach to Achieving the Objectives 

We used time-resolved photoluminescence (TRPL) to study the evolution of 

carrier density and interband polarization in GaN and ZnO materials. Our 

modeling of ultrafast optical response from semiconductor structures is based on 

the density matrix formalism. The detailed numerical solution requires a 

generalized Monte Carlo simulation. An important step toward coherent control 

of electronic excitations in GaN heterostructures will be an observation of Rabi 

oscillations in the differential transmission signal. In the wide-band-gap materials 

like GaN and ZnO, the exciton transition oscillator strength is at least an order of 

magnitude larger than in GaAs; therefore, the strong coupling regime can be 

achieved at significantly higher temperatures. 

1.2 Progress Made toward Achieving the Director’s Research 
Initiative (DRI) Research Objectives 

We performed theoretical and experimental studies of the sub-picosecond kinetics 

of photoexcited carriers in GaN and ZnO. In the theoretical model, interaction 

with an external ultrafast laser pulse is treated coherently, and to account for the 

scattering mechanisms and dephasing processes, a generalized Monte Carlo 

simulation is used. The scattering mechanisms included are carrier interactions 

with polar optical phonons and acoustic phonons, and carrier-carrier Coulomb 

interactions. We studied the effects of various scattering mechanisms on the 

carrier densities and also presented the temperature and pulse-power-dependent 

luminescence spectra. The results are presented over a range of temperature, 



 

2 

electric field, and excitation energy of the laser pulse. Here we report the 

experimental time-resolved photoluminescence studies of GaN and ZnO samples. 

We also explain the kinetics of the photoexcited carriers by including only carrier-

carrier and carrier-phonon interactions and a relatively simple 2-band electronic 

structure model. 

The analysis and modeling of polarization evolution and coherent oscillations in 

GaN quantum wells will require an inclusion of carrier confinement effects in the 

quantum kinetic model. Toward this goal, we have included polarization fields 

and strain in the “k.p model” of electron and hole states in GaN quantum wells as 

part of our theory of radiative recombination rates in nitride heterostructures. The 

quantum confinement of electron states is required for effective optical control. 

Toward that goal, we modeled the evolution of the spin of quantum-confined 

electrons, providing a clear geometrical interpretation of the qubit dynamics. 

Using the analytic form of the evolution operator, we proposed a set of single-

qubit rotations that is solely based on the geometrical phase. We demonstrated the 

adiabatic manipulation of a qubit using only the geometric phase. This has some 

advantages, since it reduces the requirements of perfect tuning of the controlled 

parameters and is significantly more robust against noise.  

2. Temperature Effects in the Kinetics of Photoexcited Carriers 
in Wide-Band-Gap Semiconductors 

The kinetics of photoexcited electrons and holes in GaN and ZnO were studied by 

sub-picosecond time-resolved photoluminescence. The rise time of the carrier 

recombination was analyzed as a function of sample temperature, from 14 K to 

room temperature, and the excitation power. In one set of measurements, the 

excitation wavelength was chosen such that the excess photon energy was 750 meV 

above the band gap, well above the polar optical phonon energy. In another set of 

measurements, the excess photon energy was 50 meV, below the polar optical 

phonon energy. The goal was to gain a better understanding of the scattering and 

dephasing processes that accompany the initial photoexcitation of carriers. Results 

showed little dependence in the rise time on the initial carrier density but strong 

dependence on the sample temperature, with the rise time increasing by more than 1 

order of magnitude as temperature decreases from room temperature down to 14 K. 

To elucidate the findings, simulations were performed based on a 2-band model and 

using a Monte Carlo technique. In the model, interaction with an external ultrafast 

laser pulse is treated coherently, and to account for the scattering mechanisms and 

dephasing processes, a generalized Monte Carlo simulation is used. The scattering 

mechanisms included are carrier interactions with polar optical phonons and 
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acoustic phonons, and carrier-carrier Coulomb interactions. We find reasonable 

agreement between the simulation and experiment. 

2.1 Theoretical Model 

In this work we consider a bulk wide-band-gap semiconductor material described 

by an isotropic parabolic heavy hole band and an isotropic nonparabolic 

conduction band.1 Considering the nonparabolicity factor for the conduction band 

increases the accuracy of the band structure. For the valence band, we just 

consider the heavy hole band. Within the energy regions considered in this work, 

holes will be confined to the heavy hole band because of its higher effective mass, 

which results in a higher density of states compared to that of the light hole band. 

Since the excitation energies that we consider in this work are lower than the 

secondary minima, as shown in Fig. 1, the particles will not be accelerated or 

excited to energy states outside the Γ valley. 

 

 

 

Fig. 1 Constant energy surfaces of (a) GaN conduction band at an energy of 750 meV and 

(b) GaN valence band at an energy of 100 meV of GaN at 300 K 

Figure 1a shows the energy surfaces for the conduction band in GaN at an energy 

of 750 meV above the conduction band minima, and Fig. 1b shows the energy 

surfaces for the valence band in GaN at 100 meV below the valence band 

maxima, calculated using an empirical pseudopotential model. From these figures 

we can conclude that this simple 2-band model is a good approximation of the 

realistic electronic structure for the range of energies considered in this work. 

However, the method can be extended to multiple valleys or full band structures. 
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The Hamiltonian describing the system contains 2 parts: H0, which includes the 

parts that can be treated exactly using a single particle model, and H1, which 

contains various interactions and dephasing processes that will be treated with 

some level of approximations. 

In this work we consider a number of dephasing processes that are due to the 

interaction of carriers and interband polarization with polar optical and acoustic 

phonons, and the carrier–carrier interactions via Coulomb potential. We describe 

the dynamics of the system using the density matrix method.2,3 The single particle 

Hamiltonian that describes the interaction of free carriers with the incoming light 

field and free phonons is given by 

 
 


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where ϵe (1 + αϵe ) = ħ 2 k2/(2me) and ϵh  = ħ 2k2 /(2mh ) are the non-parabolic and 

parabolic energy states for electrons and holes, and me and mh are electron and 

hole effective masses, respectively. Operators ck
+, dk

+,(ck, dk) are creation 

(annihilation) operators of electrons, holes with Fermi anticommutation relations. 

Operators bk and bk
+ are phonon operators with Bose commutation relations. ωq is 

the phonon frequency, Mk is the interband dipole matrix element, and E0(t) is the 

amplitude of the Gaussian-shaped laser pulse with a frequency centered at ωL and 

defined as E0 (t) = EL exp(−t2/τ 2), where EL is the peak electric field and τ can be 

related to the full width at half maximum of the measured field intensity by τ = τI 

/(2√2ln2). The external light field is treated semi-classically within the rotating 

wave approximation.4 The optical dipole matrix element in the parabolic bands 

approximation is given by Mk = dcv(1+ ħ2k2/2mrEg)
-1, which can be approximated 

by a constant, Mk ≈ dcv, for large band gap values Eg. The reduced mass is defined 

by mr = (me
–1 + mh

–1)–1. The interband electric dipole dcv is related to interband 

momentum matrix element dcv/e = ħpcv/Egm0 and in the effective mass 

approximation for 2-band model dcv = [(–1+m0/me)/2Egm0)]
1/2, from which we 

obtain in GaN case dcv/e ≈ 2.12 Å.  

To describe the kinetics of the system, we need to obtain the distribution function 

of the carriers and polarization as well as the rate of change of these functions. 

Using the Heisenberg equations of motion,  HOtO
dt

d
i ,ˆ)(ˆ   for the electron and 

hole operators and incorporating appropriate commutation relations, we obtain the 

equation of motion for particles and polarization that represent the generation rate 

for a noninteracting system: 
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with the generation rate 
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where fe
k, fh

k and pk are the distribution functions of electrons, holes, and 

polarization, respectively: 

)()()(,)()()(,)()()( tctdtptdtdtftctctf he

kkkkkkkkk 

  , with brackets 

denoting the expectation value. 

Various interactions among the particles are introduced in the model through a 

perturbing Hamiltonian. For each interaction mechanism, we consider a 

Hamiltonian H1
i, where i represents the specific interaction mechanism. In this 

work we consider polar optical and acoustic phonons, and carrier–carrier 

interactions. A number of suitable approximations are also included to overcome 

the difficulties inherent in the many-body nature of these interactions. The 

carrier–carrier interaction Hamiltonian is given by 

  







 
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


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



qp,k,

qkqppkqkqppkqkqppk cddcddddccccVH q

cc

22

11
1 , (5) 

where the first and second terms are the repulsive electron–electron and hole–hole 

interactions, and the third term is the attractive interaction of electrons and holes, 

and Vq is the screened Coulomb potential. The first-order approximation in the 

Heisenberg equations of motion leads to a renormalization of the carrier energies 

by a self-energy factor and renormalization of the light field by an internal field.2 

After obtaining the first-order correction, using the Heisenberg equation of 

motion again, one can derive the equations of the second-order contribution of 

carrier-carrier interaction. The equation for expectation values of 4 operators 

involves the strings of 6 operators. We use factorizations to truncate these chains 

of equations.3  

The Markov approximation3,4 is used to avoid time integral equations and to 

neglect the retardation effects. This approximation also implies that the electric 

field and the distribution functions vary slowly compared to the oscillation of the 

exponential terms of the laser pulse; therefore, it eliminates the effect of initial 
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correlations and dynamic memory. Furthermore, the validity of this approach is 

limited to the range of carrier densities considered in this work and may need to 

be revised for higher densities. In this work we consider the second-order 

contribution of the carrier–carrier interaction. The result of the second-order 

carrier–carrier interaction excluding the Hartree–Fock terms are given in Eqs. 6 

and 7, where α = e,h:  

  



k

q-kq-kkkq-k
k 



fWfW
dt

df cci
k

cc

cc

,
)(

,
)(

)2(

, (6) 

   
q

q-kq-kkkq-k
k pWpW

dt

dp p
k

p

cc

,,

)2(

, (7) 

where the carrier–carrier transition matrices are given by   

 

𝑊𝑘−𝒒,𝒌
𝛼,𝑐𝑐 =

𝜋

ℏ
|𝑉𝑞|

2
∑ ∑ 𝒟 (𝜀𝑘−𝑞

𝛼 − 𝜀𝑘  
𝛼 + 𝜀

𝑘′+𝑞
𝛼′

− 𝜀
𝑘′
𝛼′

) (1

𝑘′𝛼′

− 𝑓𝒌−𝒒
𝛼 ) [𝑓𝑘′

𝛼′(1 − 𝑓𝑘′+𝑞
𝛼′ ) − 𝑝𝑘′+𝑞

∗ 𝑝𝑘′] +  𝑐. 𝑐. , 

 

(8) 

and the polarization transition matrices are given by 

𝑊𝒌−𝒒,𝒌
𝑝,𝑐𝑐 =

𝜋

ℏ
|𝑉𝑞|

2
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𝛼 + 𝜀𝒌′+𝒒

𝛼′ − 𝜀𝑘′
𝛼′) [−𝑝𝒌′+𝒒

∗ 𝑝𝒌′

𝑘′𝛼,𝛼′

+ 𝑓𝑘′
𝛼′ (1 − 𝑓

𝒌′+𝒒
𝛼′ ) (1 − 𝑓𝒌−𝒒

𝛼 ) + 𝑓𝒌−𝒒
𝛼 𝑓

𝒌′+𝒒
𝛼′ (1 − 𝑓𝒌′

𝛼′)] . 

 

(9) 

The function 𝒟 (ϵ) is defined as follows: 

𝒟(ω) ≡
1

iπ

𝒫

ω
+ δ(ω) , (10) 

 

where 𝒫 denotes principal value. 

Because of the presence of free carriers, the Coulomb potential is screened. We 

use a static screening potential  

 

2

2 2

0

1
,q

s

e
V

q  



 (11) 

where ϵ0 and ϵs are the vacuum permittivity and static dielectric constant, 

respectively. The screening wave vector is calculated according to the following 

equation: 
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where ϵ(k) is the carrier energy state, and V is the volume of the material. 

Besides the interaction of carriers with each other, in this work we take into 

account the interaction with polar optical and acoustic phonons as well. The 

structure of the Hamiltonian describing these interactions is independent of the 

type of the phonon branch. The only difference is the interaction matrix element 

that describes the type of lattice deformation, in the case of acoustic phonons, and 

the long-range electric field when polar optical modes are considered. The 

Hamiltonian that describes the carrier-phonon interaction is 

   







 
qk,

qkqkqkqqkqqkqkqkqqkq dbddbdcbccbcH hheecp 1
, (13) 

where γe;h
 q is the interaction matrix element. Because of the opposite charge of 

electrons and holes, the matrix elements in the case of a polar interaction are  

γe
 q = −γh q = γq. The procedure of obtaining the second-order contribution of the 

carrier–phonon interaction to the equations of motion is similar to that of carrier–

carrier interaction. We derive Heisenberg equations of motion using the Markov 

approximation. The second-order contribution to the equations of motion, 

excluding the internal field terms, is the same as Eqs. 6 and 7; however, instead of 

We;h(cc) and Wp(cc), the contribution of phonons We;h(cp) and Wp(cp) must be 

substituted. The carrier–phonon scattering rates are given by  
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1

2
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2
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𝛼 )±− , (14) 

 

and the polarization transition matrices are given by 
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 (15) 

 

where Nq is the number of phonons with wave number q at a specific temperature, 

which is calculated using the Bose–Einstein distribution and ωq is the phonon 

frequency. 

To obtain the distribution functions, the equations are separated into 2 parts, a 

coherent part and a dephasing part. The coherent contribution includes the 

generation equations that are calculated according to Eqs. 3 and 4 for particles and 

carriers, respectively. The value of the distribution functions in the coherent case 



 

8 

can be obtained by directly integrating the generation equations. A generalized 

Monte Carlo method,3 which is very similar to the traditional Monte Carlo 

method, is used to account for the dephasing phenomena. These distribution 

functions are then used to calculate the luminescence spectrum. The rate of the 

scattering mechanisms employed in the Monte Carlo procedure is evaluated using 

the Fermi golden rule. One of the most important scattering mechanisms is the 

carrier–carrier interaction, especially in GaN with carrier densities as high as  

1018 cm−3 as considered in this work. At this range of carrier densities, the 

screening effect is essential both for the carrier–carrier scattering and carrier–

phonon scattering. In fact, each carrier, while interacting with other carriers 

through the screened Coulomb potential, is also influenced by the screening 

potential in its interactions with phonons. Therefore, the carrier–phonon 

interaction is weakened considerably by the screening potential. The screened 

carrier–carrier scattering is calculated based on the model,5,6 which takes into 

account the static screening wave vector as shown in Eq. 12. The matrix element 

of the interaction of the electrons with the polar optical phonons via the Frohlich 

interaction is as follows7: 
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, (16) 

where ϵ∞ is the high-frequency dielectric constant, q is the wave vector of 

phonons, ωLO is the polar optical phonon energy, and I(k,k’) is the overlap integral 

for the conduction band.7 For the holes, we consider the ordinary polar optical 

scattering rate for parabolic band structures. The calculated polar optical 

scattering rate at room temperature, including the effect of screening, is shown in 

Fig. 2.  
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Fig. 2 Calculated polar optical scattering rate for the nonparabolic conduction band in 

GaN including the screening effect. The solid lines show the phonon emission rate and the 

dashed lines show the phonon absorption rate. The electric field of the light is 0.6 × 107 Vm−1 

and the excess photon energy is 750 meV. 

The excess photon energy—the amount of photon energy after subtracting the 

band gap energy—is 750 meV, and the electric field of the external light is 0.6 × 

107 Vm−1. The solid lines show the phonon emission rates, and the dashed lines 

show the rate for the phonon absorption processes. The black lines (topmost solid 

and dashed lines) show the calculated scattering rate at −100 fs. At this time, the 

generation process has just started, and the density of electrons in the system is 

8.2 × 1015 cm−3. The blue lines (center solid and dashed lines) show the scattering 

rates at 0 fs when the maximum of the laser pulse occurs and the density of 

electrons is 6.1 × 1017 cm−3. Because of the increasing carrier density resulting 

from a higher generation rate, the screening wave vector changes dynamically as 

the simulated system evolves. Therefore, the polar optical scattering will be 

screened, and eventually the scattering rate will decrease. This effect is more 

pronounced, as shown by the red lines (bottom solid and dashed lines), when the 

time is 100 fs and more carriers are generated. In this case, the density of 

electrons is 1.2 × 1018 cm−3, and the electron–phonon scattering rate is at its 

lowest value. Without the screening effect, the polar optical scattering rate will 

not change during the simulation run.  

The deformation potential acoustic scattering rate for isotropic parabolic and 

nonparabolic bands are calculated based on the method presented in Jacoboni and 

Lugli.5 For the parabolic bands, only longitudinal modes contribute to the 

scattering. The scattering rate is calculated considering the acoustic deformation 
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potentials (De and Dh), longitudinal sound velocity (VL), density of the material 

(ρ), and the phonon number, nq, which is calculated based on Bose–Einstein 

distribution. For the nonparabolic conduction band, the average value of the 

longitudinal and transverse sound velocity (VT ) is used. The transferred energy is 

calculated based on energy and momentum conservation. The material parameters 

that have been used in this work are listed in Shishehchi et al.1,8 

2.2 Numerical Procedure 

This section describes the numerical approach1 used to evaluate the distribution 

functions based on the model presented in Section 2.1. Based on this model, the 

ensemble of the carriers is described by means of a number representation. This 

means that the number of super particles representing the carriers is defined at 

each cell in k space; therefore, the occupation of each cell is decreased or 

increased by one, depending on the mechanism that takes place.9 Furthermore, the 

maximum occupancy of each cell is limited by the density of states. The 

distribution function is then defined by dividing the occupation number of each 

cell by the density of state. The distribution functions of electrons and holes are 

real variables, whereas that of the polarization is complex. Consequently, the 

magnitude and the phase of polarization are assigned to a 2-vector matrix. The 

simulation process initiates with the vacuum state of the distribution of carriers 

and polarization; in other words, the distribution functions and polarization are 

equal to zero. Subsequently, the ensemble of the carriers and polarization evolves 

as time elapses as a result of the laser pulse taking the system out of equilibrium.  

The simulation period is divided into a number of time steps. At each time step, 

first the coherent part is calculated. The generation rate for the carriers is 

evaluated by a direct analytical integration, and the time evolution of the 

polarization is obtained by integrating the coupled differential Eqs. 2 and 3 

employing a Range-Kutta algorithm. The obtained distributions until this point 

are then transformed into a many-body particle distribution, which can be 

efficiently used to implement the ensemble Monte-Carlo calculation. Specifically, 

we use N super-particles for each kinetic variable. These particles are generated 

randomly according to the distribution function calculated during the coherent 

part of the time step. Since the polarization distribution function is complex, the 

phase is discretized according to the complex values of pk. Next, the scattering 

rates are calculated. Because of the dependence of the screening length on the 

distribution functions, which are updated at each time step, scattering rates should 

be recalculated once the new distributions are available. Then, a traditional Monte 

Carlo simulation is performed using the newly calculated scattering rates. After 
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each scattering event, the number of super particles in the initial cell is decreased 

by one, and the number in the final cell is increased by one.  

In this work, we also include the effect of the Pauli exclusion principle. Although 

the Monte Carlo method treats the electrons and holes as semi-classical particles, 

they should obey the Pauli exclusion principle, especially at high carrier densities 

where the distribution of the particles is highly influenced by their fermionic 

properties.10 After the scattering process, once the final state is defined, a random 

number between 0 and 1 is generated to evaluate whether the transition is 

accepted or rejected.11 In this method, the distribution function, fi , at each cell, i, 

in the k space is compared to the random number, r. If r > fi, the transition is 

accepted and the occupancy of that cell is increased by one. Otherwise, the 

transition is denied and the particle goes through a self-scattering event. 

Eventually, the distribution function is updated according to the exclusion 

principle after scattering by each mechanism. 

2.3 Experiment 

A schematic representation of the experimental setup is shown in Fig. 3. A  

250-kHz regeneratively amplified Ti:Sapphire laser produces 150-fs pulses at 

800-nm wavelength. Part of this beam is split off, acting as a gating pulse, and the 

other part pumps an optical parametric amplifier tunable from 760 to 465 nm. 

Output from the amplifier is again doubled in a nonlinear optical crystal (2Xtal) to 

produce pulses tunable from 380 to 232.5 nm. The pump pulse, compressed to a 

width of approximately 80 fs, is focused onto the sample where it photo-excites 

electron-hole pairs. The luminescence from the sample is collected using 

nondispersive optics and focused on another nonlinear crystal (NLXtal), where it 

is mixed with the gating pulse to yield a down-converted signal that is spatially 

and spectrally separated from the other beam. The down-converted signal is 

passed through a spectrometer and detected with a photomultiplier tube in photon 

counting mode. The sample used in this experiment was a 2-μm-thick 

heteroepitaxial GaN film deposited by metalorganic chemical vapour deposition   

(MOCVD) with a fully graded aluminum gallium nitride (AlGaN) layer on bulk 

aluminum nitride (AlN). The arrival time of the near-IR gate pulse relative to the 

UV photoluminescence maps the TRPL with 350-fs resolution as determined by 

the group velocity dispersion between the 2 beams in the nonlinear crystal. The 

energy range of the carrier distribution monitored is a function of the acceptance 

angle of the phase matching condition in the nonlinear crystal. 
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Fig. 3 A schematic representation for time-resolved photoluminescence through optical 

gating by frequency down-conversion. Excitation laser provides pulses tunable from 3.26 to 

5.33 eV, suitable for studying GaN with generated electron-hole pairs up to 1020 cm−3. 

2.4 Results and Discussion for the Gallium Nitride (GaN) Case  

In this section we present and compare the theoretical and the experimental results 

for the case of GaN. In particular, we will look at the time evolution of the 

electron and hole densities as a function of the electric field strength and intensity 

of the external pulse. The material parameters are listed in Table 1. We present 

the effect of various scattering mechanisms on these results, with particular 

emphasis on the analysis of the phenomena that lead to the disruption of the 

coherence in the system. In this context, to highlight the role of polar optical 

phonon scattering, we consider 2 excitation energies: one with an excess photon 

energy of 750 meV, which is higher than the polar optical phonon energy (91.2 

meV), and the other one with excess photon energy of 50 meV, which is lower 

than polar optical phonon energy. For the case of excitation with the lower 

energy, longitudinal optical (LO) phonon emission processes are significantly 

suppressed and do not drive the energy relaxation in the system. Finally, we 

consider the calculated luminescence for both values of the excess photon 

energies. Moreover, we study the effect of temperature on the luminescence 

spectra and compare it with the measured values. 
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Table 1 Parameters used in the simulation for GaN 

 

Figure 4a shows the calculated time evolution of the electron number density 

function at room temperature when the excess photon energy is 750 meV and the 

electric field of the laser pulse is 0.6 × 107 V m−1. The number density function 

n(E) is defined as the product of the density of states and the carrier distribution: 

n(E) = g(E) f(E). Figure 4b provides the same information for holes. The energy 

in (a) is measured from the bottom of the conduction band, and the energy in (b) 

is measured from the top of the valence band. 

 
Fig. 4 Calculated time evolution of the electron (a) and hole (b) number density functions 

at room temperature  
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The time scale has been chosen so that the peak of the Gaussian laser pulse occurs 

at 0 fs, and the calculated electric field interaction extends from −200 to 200 fs. 

The particle distribution results are shown at the instants corresponding to −50 fs, 

0 fs, 50 fs, 100 fs, 150 fs, and 500 fs. The dashed black line shows the normalized 

electron density at −50 fs. At this time step, carriers are being generated and, as 

the time elapses, the number of the carriers’ density increases. Since the excess 

photon energy of 750 meV is divided between the conduction and valence bands 

(based on the respective density of states), we observe that the maximum of the 

electron distribution is below the excess photon energy. For holes, the peak of the 

distribution occurs just below 200 meV. As the time elapses, the scattering 

processes relax the carriers’ energy and change the shape of the distribution. The 

dot-dashed green line shows the results at 0 fs—the time at which the laser pulse 

intensity is maximum. At this time, another peak emerges at an energy of about 

91 meV, which corresponds to the optical phonon energy. The peak is due to the 

polar optical phonon scattering emission mechanism that cannot occur below this 

energy. At later times, 100 and 150 fs, the shoulder at ≈91 meV becomes more 

and more pronounced. Eventually, at 500 fs when the laser pulse is extinguished, 

the distribution is completely relaxed and carriers have accumulated in a region 

close to the band edge energy. 

From the time evolution of the carrier number density functions, it is possible to 

garner additional information on the coherent processes in the system. The 

coherent effects can be analyzed either as a function of the electric field at a given 

time or for a given electric field intensity as a function of time. Figures 5a and 5b 

show the calculated normalized total electron density as a function of the electric 

field of the external light for the case that the excess photon energy is 50 and 750 

meV, respectively. In this case, the lattice temperature is 300 K, and the density 

values are obtained after the system has reached steady state, long after the laser 

pulse is finished (1.5 ps). Furthermore, the integrated number of the electrons in 

the whole k space has been calculated, then the data have been normalized to the 

maximum value obtained at each field value. 
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Fig. 5 (a) Calculated effect of scattering mechanisms on the integrated density of 

electrons in GaN vs. electric field of the external light at 300 K when the excess photon 

energy is 50 meV. (b) Calculated effect of scattering mechanisms on the integrated density of 

electrons in GaN vs. electric field of the pulse at 300 K when the excess photon energy is 

750 meV. 

The various curves in Figs. 5a and 5b illustrate the effect of various scattering 

mechanisms on the density of the carriers and degree of coherence in the system. 

The dashed black line shows the coherent case where no dephasing process is 

included. In this case, the Monte Carlo part of the numerical model is excluded, 

and the results are obtained by just taking into account the first-order solution of 

the equations of motion. Since no dephasing process is present, the distribution 

functions of electrons and holes are highly correlated. Furthermore, Rabi 

oscillations4 can be seen in the result. The oscillation is more pronounced when 

the excitation energy is higher (750 meV in Fig. 5b). Figure 6 presents the Rabi 

oscillation in the time domain for the 2 excess energy values.  
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Fig. 6 Calculated normalized electron density vs. time at room temperature in GaN. The 

electric field of the light pulse is 108 Vm−1 for 2 values of excess photon energy. These curves 

have been computed only considering the coherent effects as described in Eqs. 2, 3, and 4, 

and neglecting the dephasing due to scattering mechanisms. The values are normalized to 

the maximum of the curve corresponding to 750 meV. 

The normalized electron density at room temperature as a function of time for the 

previous excitation energies when the electric field is equal to 108 Vm−1 is shown 

in Fig. 6. The excess photon energies for the solid and dashed lines are 750 and 50 

meV, respectively. It can be seen that the Rabi oscillation becomes stronger as the 

excitation energy increases. Besides the case in which no dephasing is present, 

Fig. 5 shows the effects of various scattering processes on the coherence in the 

system. The presence of interactions with phonons and other carriers changes the 

picture of the correlation between electrons and holes. The dot-dashed green lines 

in Figs. 5a and 5b show the case that only phonon-scattering mechanisms are 

included. The phonon-scattering process includes both the polar optical and 

acoustic scattering mechanisms. In polar optical phonon interaction, the carriers 

emit or absorb an integer number of phonons, and the distribution relaxes toward 

lower energy states. Consequently, if the excitation energy is lower than the polar 

optical energy, the polar optical phonon emission process is less probable. 

However, acoustic phonon processes, having a much lower energy than polar 

optical phonons, can occur at any excitation energy. The dashed blue lines 

represent the case when only the carrier–carrier interaction is included in the 

system. The role of this process is to basically redistribute the energy in the 

system; therefore, as a result of this relaxation mechanism, the peaks of the carrier 

distribution function broaden. Eventually, the solid red line represents the case 

that all the above mechanisms are included. The broadening effect due to the 

carrier-carrier scattering is dominant when the excess photon energy is 50 meV 
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since the polar optical is no longer the dominant energy loss mechanism. To 

summarize, according to Fig. 5a, for the case that the excess photon energy is less 

than the polar optical phonon energy, since the polar optical phonon emission is 

no longer dominant, the total density of electrons, where all the interactions are 

present, follows the shape of the carrier–carrier dephasing curve. This suggests 

that in this case, the carrier–carrier scattering mechanism is the dominant process. 

However, in Fig. 5b where the photon excess energy is higher than the polar 

optical phonon energy, polar optical phonon emission is a strong process in 

relaxing the carriers; therefore, the final density of electrons follows the phonon 

dephasing curve. In this figure, the electron density values of the carrier–carrier 

dephasing case at each electric field seem to be larger than the values of the curve 

where all the scattering rates are included. However, care must be taken in 

comparison since these are the normalized values. The actual values of the carrier 

density at each electric field in the case where all the scattering mechanisms are 

included exceed the values of all the other cases. In fact, the presence of each 

scattering mechanism affects the distribution of polarization, which has a major 

role in the carrier generation rate. 

To compare the results obtained from the numerical model with the experimental 

data, we have computed the energy-resolved time-dependent luminescence. To 

calculate the luminescence at various energies of interest, once the system reaches 

the steady state condition, we select specific ranges of photon energies. For 

example, we consider narrow energy regions close to the band gap energy, the 

polar optical phonon energy, twice the polar optical phonon energy, and other 

multiples. Subsequently, we multiply the electron and holes at each energy within 

the narrow band and sum all these partial products over the selected energy 

region. After that, we normalize the luminescence data to the respective 

maximum values. Figure 7 shows the calculated energy-resolved time-dependent 

photoluminescence for the case that the excess photon energy is 750 meV. The 

electric field of the external pulse is 0.6 × 107 Vm−1 and the lattice temperature is 

300 K. The peak of the laser pulse is located at the origin of the time axis, and the 

time evolution of the carrier ensembles has been collected up to 8 ps.  
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Fig. 7 Luminescence spectra in GaN at room temperature (300 K) calculated for different 

energy regions  

The inset of the figure shows the results up to 0.6 ps where the details and the 

sequence of the curves are more distinguishable. The solid black line shows the 

results when the photoluminescence energy is collected at band edge energy, 

which is the slowest process. The dotted red line, the dot-dashed green line, and 

the dashed blue line show the results when the selected energy is equal to 1, 2, 

and 3 polar optical phonon energies (1LO, 2LO, 3LO), respectively. The 3LO 

case is the fastest process, then the 2LO, and afterwards the 1LO curves reach the 

steady state. 

Figures 8a and 8b present the luminescence results in GaN when the temperature 

is equal to 50 and 150 K, respectively. The electric field and the excess photon 

energy are the same as the ones in Fig. 7. 

The results clearly show that as the temperature decreases, the rise time increases. 

More specifically, the rise time for the band edge energy region changes 

significantly. This is due to the fact that at lower temperatures, the polar optical 

scattering rate is lower, and therefore this process is weaker in relaxing the carrier 

distributions.  

Although we have endeavored to develop our simulation models to provide the 

best description of the physical phenomena that emerge from the experiment, a 

quantitative comparison is not always possible. In fact, the simplified band 

structure and neglecting the internal field and the imaginary part of the self-

energy arising from the second-order correction to the carrier–carrier and carrier–

phonon interactions2 may lead to simulation results that in some cases can only be 

in qualitative agreement with the experiment. 
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Fig. 8 (a) Luminescence spectra in GaN at 150 K collected at different energy regions. 

The excess photon energy is 750 meV. (b) Luminescence spectra in GaN at 50 K collected at 

different energy regions. The excess photon energy is 750 meV. The electric field of the 

external light pulse is 0.6 × 107 V m−1 in both cases. 

Figures 9a and 9b show the results of luminescence for the temperature values 

ranging from 150 to 300 K obtained by experiment and simulation, respectively, 

when the excess photon energy is 750 meV. It clearly shows that as the lattice 

temperature increases, the luminescence rise time decreases.  

Because of the specific experimental conditions, it is not always possible to 

directly correlate the beam power used in the measurements with the electric field 

magnitude employed in the simulations. In fact, for the model we have employed, 

as opposed to the case of a semiclassical generation model, the number of 

generated carriers depends on the interplay between the coherent and dephasing 

phenomena. Nevertheless, the numerical model predicts the correct trend of the 

experimental results. It is important to appreciate this point, since the 

experimental conditions under which the results in Fig. 9a were obtained are not 

the same as the ones considered in computing the values presented in Fig. 9b. 
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Fig. 9 Luminescence spectra of GaN at different temperatures collected at band edge 

energy region. The excess photon energy is 750 meV. (a) shows the experimental results and (b) 

presents the simulated results for an electric field of the external light pulse of 0.6 × 107 V m−1. 

In order to show that this is still a valid comparison, even if the power of the beam 

in the experiment and the electric field magnitude in the numerical model cannot 

be directly correlated, we have computed the luminescence as a function of the 

electric field strength. According to the experimental results shown in Fig. 10a, 

the luminescence rise time is independent of the power of the laser pulse. In both 

Figs. 10a and 10b, the luminescence results at GaN collected at the band edge 

energy region are shown over a range of laser pulse powers in which the rise 

times are approximately the same.  
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Fig. 10 Luminescence spectra of GaN at different laser powers collected at band edge 

energy region. The excess photon energy is 750 meV and the lattice temperature is 150 K. (a) 

shows the experimental results and (b) presents the simulated results. In (a), E represents 

the baseline power used in the experiment. In (b), E is the baseline value of electric field 

employed in the simulation. 

In Fig. 10, the lattice temperature is 150 K and the excess photon energy is 

750 meV. Fig. 10b shows that the numerical simulation results deliver the same 

trend as the experiment. On the basis of this result, we can justify the comparison 

made in Figs. 9a and 9b where we presented the temperature-dependent 

experimental and simulated luminescence rise time. Figure 11 shows the 

luminescence spectra collected at the band edge energy region when the electric 

field of the light is 0.6 × 107 Vm−1 and the excess photon energy is 50 meV. The 

results are just for the band edge energy because the higher energies are less 

important—in this case, the excess photon energy is lower than the polar optical 

phonon energy.  
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Fig. 11 Calculated luminescence spectra of GaN at different temperatures collected at 

band edge energy region. The excess photon energy is 50 meV and the electric field of the 

external light pulse is 0.6×107 V m−1. 

The solid black line shows the results when the temperature is 50 K, the dashed 

red line shows the results when the temperature is 150 K, and the dot-dashed 

green line shows the results when the temperature is 300 K. As seen in the figure, 

when the temperature decreases, the rise time of the luminescence spectrum 

increases. Figure 12 shows the results of the integrated luminescence spectrum in 

GaN collected up to 8 ps at the band edge energy region. The lattice temperature 

is 150 K, and the excess photon energy is 750 meV. The results are shown versus 

the normalized power of the laser pulse. The solid line shows the results of the 

theory, and the marker points show those of experiment. The figure clearly shows 

a reasonable agreement in the results. As the power increases, because of the 

generation of more carriers, the intensity of the luminescence spectrum increases. 

 
Fig. 12 The integrated luminescence spectra of GaN collected up to 8 ps vs. normalized 

laser power collected at band edge energy region. The excess photon energy is 750 meV and 

the lattice temperature is 150 K. 
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2.5 Summary for Gallium Nitride (GaN) Experiments and 
Modeling 

We presented a theoretical and experimental study of the subpicosecond kinetics 

of photoexcited carriers in GaN. We considered a bulk GaN model with an 

isotropic parabolic heavy hole band and an isotropic nonparabolic conduction 

band. In the theoretical model, interaction with an external ultrafast laser pulse is 

treated coherently, and to include the scattering mechanisms and dephasing 

processes, a generalized Monte Carlo simulation is used. 

The scattering mechanisms included are carrier interactions with polar optical 

phonons and acoustic phonons, and carrier–carrier Coulomb interactions. The 

results of the integrated density of electrons are shown for 2 different excess 

photon energies. In the case where the excess photon energy (50 meV) is less than 

the polar optical phonon energy, carrier–carrier scattering is the dominant process. 

However, when the excess photon energy (750 meV) is greater than optical 

phonon energy, the polar optical phonon scattering is the most significant relaxing 

process. Besides the carrier densities, temperature-dependent luminescence 

spectra have been studied. We showed that for all values of the excess photon 

energies, as the temperature decreases, the luminescence rise time increases. This 

effect is due to the lower polar optical scattering rate, which results in the fact that 

this process is no longer strong enough to relax the carriers. For comparison, we 

also report the experimental time-resolved photoluminescence studies on GaN 

samples. In conclusion, we have shown that we can explain the kinetics of the 

photoexcited carriers in GaN by including only carrier–carrier and carrier–phonon 

interactions and a relatively simple 2-band electronic structure model. 

Furthermore, we have presented a detailed analysis of the effect of a different 

dephasing machanism on the carrier kinetics. Finally, we have experimentally 

measured and simulated using our theoretical model the temperature and pulse 

power dependence of the photoluminescence spectra. 

2.6 Results and Discussion for the Zinc Oxide (ZnO) Case  

In this section, we present and compre the normalized luminescence intensity 

results obtained by theory and experiment in the case of ZnO. More specifically, 

we compare the luminescence rise times and the effect of temperature on them. 

The results are obtained in a range of excitation energies and temperature values. 

The material parameters for ZnO are given in Table 2. 

The calculated polar optical scattering rates for electrons are shown in Fig. 13, 

when the electric field of the light is 0.6 × 107 Vm–1, the excess photon energy is 

380 meV, and the lattice temperature is 300 K. 
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Table 2 Parameters used in the simulation 

 
 

 

 

Fig. 13 Calculated polar optical scattering rate for the nonparabolic conduction band in 

ZnO including the screening effect. The solid lines show the phonon emission rate, and the 

dashed lines show the phonon absorption rate. The electric field of the light is 0.6 × 107 Vm–1, 

the excess photon energy is 380 meV, and the lattice temperature is 300 K. 

Figures 14a and 14b show the results of the normalized luminescence intensity 

obtained by experiment and simulation, respectively. The excess photon energy is 

380 meV, and the lattice temperature is 300 K. Different curves show the energy 

regions where the luminescence has been obtained, and each curve is normalized 

to its maximum value. The solid black line shows the result of the luminescence 

obtained for photon energies near the band edge transition. The dashed red line, 

dot-dashed green line, and double-dot-dashed blue line show the same results 

obtained at 0.5, 1, and 1.5 polar optical phonon energy in excess of the band edge 

optical energy transition, respectively. 
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Fig. 14 The result of the normalized luminescence intensity from ZnO obtained by 

experiment (a) and simulation (b). The excess photon energy is 380 meV, and the lattice 

temperature is 300 K. 

Figure 15 shows the result of the normalized luminescence intensity from ZnO 

obtained at the band edge energy region. The dashed line represents the 

experimental result, and the simulated result is shown by the solid line. In this 

case, the excess photon energy is 40 meV, and the lattice temperature is 75 K. 
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Fig. 15 The result of the normalized luminescence intensity from ZnO obtained by 

experiment (dashed line) and simulation (solid line). The excess photon energy is 40 meV, the 

electric field of the laser pulse is 0.6 × 107 Vm–1, and the lattice temperature is 75 K. 

Besides the results of the rise time, we also investigated the effect of temperature 

on the rise time. Figure 16 shows the results of the normalized luminescence 

intensity, when the excess photon energy is 380 meV, calculated at the band edge 

energy region over a range of lattice temperature values from 150 to 300 K. It 

clearly shows that, as the lattice temperature increases, the luminescence rise time 

decreases. This is because at lower temperatures, the polar optical scattering rate 

is weaker than at room temperature and, therefore, this process is not as effective 

in relaxing the carrier distributions. 

 

Fig. 16 The normalized luminescence intensity from ZnO at different temperature values 

calculated at band edge energy region. The excess photon energy is 380 meV, and the electric 

field of the external light pulse is 0.6 × 107 V m–1. 
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In this study we considered bulk ZnO modeled by an isotropic parabolic heavy 

hole band and an isotropic nonparabolic conduction band. In the theoretical 

model, interaction with an external ultrafast laser pulse is treated coherently, and 

the scattering mechanisms and the dephasing processes are taken into account 

through a generalized Monte Carlo simulation. The scattering mechanisms 

included are carrier interactions with polar optical phonons and acoustic phonons, 

and carrier–carrier Coulomb interactions. The results of the calculated normalized 

luminescence intensity from ZnO at 2 excitation energies and lattice temperature 

values are in good agreement with those of the experimental study obtained by the 

time-resolved photoluminescence method. We also presented the calculated 

results of the temperature-dependent luminescence intensity. As a conclusion, as 

the temperature decreases, the luminescence rise time increases. This effect is due 

to the lower polar optical scattering rate, which results because this process is no 

longer strong enough to relax the carriers. 

In conclusion, we have shown that we can explain the dynamics of the 

photoexcited carriers in ZnO by including only carrier–carrier and carrier–phonon 

interactions and a relatively simple 2-band electronic structure model. 

3. Geometric Single-Qubit Quantum Gates for an Electron Spin 
in a Quantum Dot 

We propose a scheme to perform arbitrary unitary operations on a single electron-

spin qubit in a quantum dot. The design is solely based on the geometrical phase 

that the qubit state acquires after a cyclic evolution in the parameter space. The 

scheme uses ultrafast linearly chirped pulses, providing adiabatic excitation of the 

qubit states, and the geometric phase is fully controlled by the relative phase 

between pulses. The analytic expression of the evolution operator for the electron 

spin in a quantum dot, which provides a clear geometrical interpretation of the 

qubit dynamics, is obtained. Using parameters of InGaN/GaN and GaN/AlN 

quantum dots, we provide an estimate for the time scale of the qubit rotations and 

parameters of the external fields. 

3.1 Introduction 

The electron spin in a single quantum dot is one of the perspective realizations of 

a qubit for the implementation of a quantum computer. During the last decade, 

several control schemes to perform single gate operations on a single quantum dot 

spin have been reported.12–15 Here we propose a scheme that allows performing 

ultrafast arbitrary unitary operations on a single qubit represented by the electron 

spin. The idea of geometric manipulation of the qubit wave function has been 
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recently developed into a new research direction called geometric quantum 

computing.16–18 The main motivation of this development is the robustness of 

geometric quantum gates against noise.19,20 In this report, we demonstrate how to 

use the geometric phase, which the Bloch vector gains along the cyclic path, to 

prepare an arbitrary state of a single qubit. We show that the geometrical phase is 

fully controllable by the relative phase between the external fields. We also 

discuss the realistic implementation of the proposed design using the electron spin 

in a charged quantum dot as an example of a qubit. 

3.2 General Equations of Motion 

Let us consider the coherent Raman excitation in the 3-level  -type system 

consisting of the 2 lowest states of electron spin | 0 | X    and |1 | X    coupled 

through an intermediate trion state | T   consisting of 2 electrons and a heavy 

hole21 (Fig. 17).  

 
Fig. 17 Energy structure of the 3-level system comprising the 2 electron spin states and the 

trion state 

We assume that the trion state is far off-resonance with the external fields to 

ensure that decoherence on the trion-qubit transitions can be neglected. The 

electron spin states are split by an external magnetic field; the separation energy is

e . The total wave function of the system 

 0 1| ( ) ( ) | 0 ( ) |1 ( ) | ,t a t a t b t T       
  

(17)
 

where  0,1a t  and  b t are the probability amplitudes, is governed by the time-

dependent Schrödinger equation with the Hamiltonian 

 

0 0 ( ( ) ( ))

0 ( ( ) ( )) ,

( ( ) ( )) ( ( ) ( ))

P S

e P S

P S P S T

t t

t t

t t t t





   
 

    
       

H

  

(18)

 

where 
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, 0, 0 , ,( ) ( )cos[ ( )],P S P S P S P St t t t   
  

, 0, 0 , ,( ) ( )cos[ ( )],P S P S P S P St t t t   
  

0, 0 0 , 1 ,( ) ( ) /P S T T P St E t 
 
, and

  

0, 0 1 , 0 ,( ) ( ) /P S T T P St E t 
 
are the Rabi frequencies; 

 

0 , 1T T
 are the dipole moments;  

 ,P SE t
 
are the pulse envelopes;

  

,P S are the center frequencies; 

 , ( )P S t are the time-dependent phases; and
  

T is the energy of the trion state. 

We are considering here a case of linearly chirped pulses such that 

 
2

, , ,( ) / 2,P S P S P St t   
  (19) 

where ,P S  are the initial phases and ,P S  are the chirps of the pulses. 

Using transformation | ( ) | ( )RWAt t    U  , where 

 ( )

1 0 0

0 0 ,

0 0

S P

P

i t

RWA

i t

e

e

 







 
 

  
 
 

U  (20) 

 
( )1

1 0 0

0 0 ,

0 0

S P

P

i t

RWA

i t

e

e

 



 







 
 

U  (21) 

we make the rotating wave approximation (RWA) by neglecting the rapidly 

oscillating terms with frequency 2 , 2S P   and S P  . In the RWA, the 

Hamiltonian has the following form:  
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 (22) 

 

where 

,P T P P S          ,
 

( )( )

0 0( ) , ( ) SP i ti t

P P S St e t e


     ,
 

( )

0( ) Pi t

P P t e


  , and
 

( )

0( ) Si t

S S t e


  .
 

Assuming large detunings of the pump and Stokes field frequencies from the 

transition frequencies to the trion state, we apply the adiabatic elimination of the 

trion state. In that case, 0b  and we find 

    * * * *

0 1

1
( ) ( ) .

2

i t i t

P S P S

P

b e a t e a t   

   
       

  (23) 

Substituting Eq. 23 into equations for 0,1a after some algebra, we obtain the 

following form of the Hamiltonian for the effective 2-level system: 

 
0

*

1

( ) ( )
,

( ) ( ) 22

ac eff

eff ac

t t

t t 

  
  

   
H   (24) 

where e    , 

  2 2

0 0 0 0 0

1
( ) ( ( ) ( ) 2 ( ) ( )cos ( ) ( ) ,

2
ac P S P S P S

P

t t t t t t t t           


 (25) 

  2 2

1 0 0 0 0

1
( ) ( ( ) ( ) 2 ( ) ( )cos ( ) ( ) ,

2
ac S P S P P S

P

t t t t t t t t           


 (26) 
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Since 
0 0 0 0( ) ( ) ( ) ( )P S P St t t t    , we have 
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  (28) 

Making the transformation | ( ) | ( )t t    U , with 
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where 0 1( ) ( ( ) ( )) / 4st ac act t t    , we can rewrite Eq. 24 in a more symmetric 

form. In the new basis, the Hamiltonian takes the form 
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  (30) 

where 0 1( ) ( ( ) ( )) / 2dif ac act t t    . 

Taking into account the exact time dependence of the phases in Eq. 19, we apply 

another transformation | ( ) | ( )Ft t    U , with 
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where P S    . Therefore, in the field interaction representation the 

Hamiltonian takes the following form: 
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where ( ) ( ) ( )S P dift t t       , P S     , and 
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In general, the differential AC Stark shift, ( )dif t , is not zero and has to be taken 

into account. Using the definition of the Rabi frequency, we can rewrite Eqs. 25 

and 26 in the form 
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  (35) 

In the case when 0 1T T  , the AC Stark shifts are the same for both qubit states, 

so that ( ) 0dif t  , and we have 

 
*

( )
.

( )2

i

eff

i

eff

t t e

t e t





 

 



 

  
      

H   (36) 

Note that we do not require completely overlapped pulses here. 

3.3 Nonimpulsive Case 

In some excitation schemes, because of selection rules that take into consideration 

the polarization of the external field, the pump and Stokes field interact only with 

the corresponding transitions, and the general Hamiltonian can be simplified. For 
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that case, we can obtain the correct form of the Hamiltonian by putting 

0 0( ) ( ) 0P St t    in Eqs. 25, 26, and 33. It results in 

 2
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  (39) 
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Therefore, in the field interaction representation, the Hamiltonian has the form 
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where 

 2 2

0 0( ) ( ) [ ( ) ( )] / 4 .S P P S Pt t t t            (42) 

3.4 Adiabatic Solution 

The Hamiltonian in Eq. 41 controls the dynamics of the qubit wave function in 

the approximation of the adiabatic elimination of the trion state. Here we consider 

the adiabatic excitation of the qubit and find the adiabatic solution of the 

Schrödinger equation with the Hamiltonian in Eq. 41. 

Since the phase factor, 
ie 

, of the coupling term in Eq. 41 is time independent, it 

is convenient to use the following transformation | ( ) | ( )t t    A , where 
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so that the new wave function is governed by the Hamiltonian 
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To solve the Schrödinger equation in the adiabatic representation, we apply 

another transformation, | ( ) ( ) | ( )t t t    R , where 
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and tan[2 ( )] ( ) / ( )et t t  . In the new basis the Hamiltonian, Eq. 44, takes the 

form 
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where 
2 2( ) ( ) ( )et t t   . 

As we see, the Hamiltonian in Eq. 46 is diagonal in the adiabatic basis, and we 

can readily write down the solution. However, since the transformation ( )tR is 

time dependent, an additional nonadiabatic coupling term is present in the general 

Schrödinger equation 
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Neglecting the nonadiabatic coupling term in Eq. 47, we readily obtain for the 

qubit wave function in the original basis 
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where 
0

( ) ( )
t

t dt t    . The general form of the evolution operator in Eq. 49 is 

well justified if the following condition 3| ( ) ( ) ( ) ( ) | ( )e et t t t t     is valid. 

In the case of completely overlapped pulses, 0 0( ) ( )P St t  , with identical chirp 

rates, P S  , for the resonant qubit, ( ) 0t   , we have ( ) (0) / 4t     , 

and the transformation matrix becomes 
/4

( ) (0) yi
t e


 

σ
R R . Therefore, the 

unitary evolution operator for the wave function of the resonant qubit takes the 

form 

 

   

   

   

      ( ) · /2

cos ( ) / 2 sin ( ) / 2
( )

sin ( ) / 2 cos ( ) / 2

cos ( ) / 2 sin ( ) / 2 ( )

cos ( ) / 2 sin ( ) / 2 · ,

i

i

i i

iS t

S t ie S t
t

ie S t S t

S t i S t e e

S t i S t e





 



 

  

 




 
 

  

   n σ

U

I σ σ

I n σ

  

(50)
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where 
0

( ) ( )
t

eS t dt t    is the effective pulse area, ( cos ,sin ,0)    n ,

( ) / 2x yi  σ σ σ are the Pauli raising and lowering operators, and 
, ,x y zσ  are the 

Pauli operators. The nonadiabatic coupling term, Eq. 48, is zero for the resonant 

qubit, and the solution of the Schrödinger equation in the adiabatic 

approximation, Eq. 50, is the exact solution. 

The density plots of the population and coherence ( *

0 1| ( ) ( ) |a T a T ) at the final time 

(after the pulse excitation) as a function of the effective pulse area, ( )S T , and the 

dimensionless frequency chirp parameter, 2

0/  , described by the unitary 

evolution operator in Eq. 50 is depicted in Fig. 18. We use the Gaussian shape for 

the pulse envelopes, assuming that linear chirp is obtained by applying a linear 

optics technique, meaning that a transform-limited pulse of duration 0  is 

chirped, conserving the energy of the pulse. The temporal    and spectral     

chirps are related as 4 2 4

0 0/ (1 / )       , where 0  is the transform-limited 

pulse duration. We observe the Rabi oscillation regime, when the population of 

the qubit states is changing between 0 and 1 while the coherence is changing 

between 0 and 1/2. This behavior does not depend on the chirp rate, since the 

effective Rabi frequency ( )e t  is determined by the product of the pump and 

Stokes Rabi frequencies: 2 2 2 4 1/4

0, 0 0 0( ) exp{ / (2 )}/ [1 / ]P S t t       with the 

chirp-dependent pulse duration 2 4 1/2

0 0[1 / ]      and the amplitude.22,23 

  

Fig. 18 The density plot of the |1  state population (a) and coherence (b) as a function of 

the effective pulse area and frequency chirp; 
P S  , 0  . Initially, only the |1  state is 

populated. 

In turn, for the off-resonant qubits, 0  , the evolution operator in the adiabatic 

approximation takes the form 
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( ) ( )

( ) ( )

cos ( ) sin ( )
( ) ,

sin ( ) cos ( )

i t i t i

i t i i t

e t e e t
t

e e t e t

  

  

 

 

 

  

 
 
 

U   (51) 

where 

 
2 2 2 2

1 1
cos ( ) 1 ,sin ( ) 1

2 2( ) ( )e e

t t
t t

 
 

 
   

 
  (52) 

and 
2 2

0

1
( ) ( )

2

t

et t dt      is the effective pulse area. 

For the off-resonant case, the transformation matrixes are 

 
1

cos ( ) sin ( ) 1 0
( ) , (0) .

sin ( ) cos ( ) 0 1

t t
t R

t t

 

 


   

   
  

R   (53) 

Figure 19 demonstrates excitation of the off-resonant qubit. As expected, the 

population of the off-resonant qubit at the final time is not changed by the 

external fields as long as the pulse excitation parameters are in the adiabatic 

regime. This is the regime of adiabatic return. However, we still observe the Rabi 

oscillation for the value of the chirp 2

0| | 5  . This is the area of nonadiabatic 

population transfer where the nonadiabatic coupling term cannot be neglected in 

Eq. 47. 

  

Fig. 19 The density plot of the |1  state population (a) and coherence (b) as a function of 

the effective pulse area and frequency chirp; 
P S  , 

0 0.75  . Initially, only the |1  state 

is populated. 
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3.5 Bloch Vector Representation 

The dynamics of the qubit wave function can be described equally well using the 

Bloch vector representation. In addition, the Bloch vector formalism allows a very 

nice and clear geometrical interpretation of qubit dynamics.24 In this section, we 

give a short overview of the Bloch picture. 

A general state of a qubit can be described as 

    0 1| ( ) | 0 ( ) |1 cos / 2 | 0 sin / 2 |1 ,ia t a t e             (54) 

where   and   are the phase parameters. Up to an insignificant global phase, 

the wave function can be mapped into a unitary Bloch vector ( , , )u v wB , as 

shown in Fig. 20. 

 
Fig. 20 The Bloch vector representation of the qubit state. Excitation of the qubit by an 

external field corresponds to the rotation of the B vector about the pseudo field vector, Ω, 

with components determined by the effective Rabi frequency ( )e t , detuning  , and the 

relative phase  . 

To use Bloch vector representation, we construct the qubit density matrix 

 
00 01

10 11

1 cos sin1
| | ,

2 sin 1 cos

i

i

e

e





 

 

  
    

   
ρ   (55) 

where *( ) ( )ij i ja t a t , , 0,1i j  . Using a Pauli matrix decomposition 

 

   

 

1 1
· · · ·

2 2

1
cos sin · sin sin · cos · ,

2

x y z

x y z

u v w

    

     

   

ρ I Bσ I σ σ σ

I σ σ σ

  

(56)
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we identify relation between the components of the qubit wave function, the qubit 

density matrix elements, and the Bloch vector components. Therefore, we obtain 

the following expression: 

 

01 10

01 10

00 11

cos sin

( ) sin sin .

cos

u

v i

w

 

 



   
  

   
  

      

B   (57) 

Taking into account the Hamiltonian in Eq. 41, the equation of motion for the 

density matrix   i  ρρ H ρ H  takes the following explicit form 
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 
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i e e t

i t t e

i t t e

i e e t

 





 





  



 

  

  

    

   

   

  (58) 

Using the relations in Eq. 57, we can also write the dynamic equation in the Bloch 

vector representation as 

 

( ) ( )sin ,

( ) ( ) cos ,

( )sin ( )cos .

e

e

e e

u v t w t

v u t w t

w u t v t

 

 

 

   

    

      

  (59) 

Introducing a pseudo field vector, Ω, with components determined by the 

effective Rabi frequency, 2-photon detuning, and the relative phase between 

pump and Stokes pulses, 

 

( ) cos

( )sin ,

( )

e

e

t

t

t







  


  


  

Ω   (60) 

we can rewrite Eq. 59 in the compact form 

 . B Ω B   (61) 

This is the Bloch equation, which describes a precession of the Bloch vector, B, 

about the pseudo field vector, Ω, and allows clear, intuitive interpretation of qubit 

dynamics. 
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3.6 Evolution Operator of the Bloch Vector 

Since we already know the exact form of the evolution operator ( )tU  in Eq. 50 

and 

 | ( ) ( ) | (0) ,t t    U   (62) 

we can easily construct the evolution operator for the Bloch vector. Using the 

definition of the density matrix, we have 

 † †( ) | ( ) ( ) | ( ) | (0) (0) | ( ) ( ) (0) ) ( ,t t t t t t t      ρ U U U ρ U   (63) 

where 

 
00 01 0 0 0

10 11 0 0 0

(0) (0) 11
(0) | (0) (0) |

(0) (0) 12

w u iv

u iv w

    
       

    
ρ    

is the initial condition and 
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(64)

 

Therefore, 
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  (65) 

Taking into account Eq. 57, we obtain for the Bloch vector: 
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C S C S C S

  

  

 

     
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      
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B B   (66) 

where
 

 cos ( ) / 2C S t ,
 

 sin ( ) / 2S S t .
 

3.7 Ultrafast Qubit Rotations Using Geometrical Phase 

At this point, we are ready to discuss implementation of the single qubit gates 

since we have obtained the analytic solution for the qubit wave function and 

constructed the evolution operator in the Bloch vector representation. A universal 
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set of quantum gates has been intensively discussed in the literature related to the 

universality in quantum computation.25 To perform quantum computation, we 

must have 2 major building blocks at our disposal:  arbitrary unitary operations on 

a single qubit and a controlled-NOT operation on 2 qubits. Here we address only 

single qubit manipulation. 

To demonstrate arbitrary geometric operations on a single qubit, we use the Bloch 

vector representation discussed in the previous section. Since any unitary rotation 

of the Bloch vector can be decomposed as 

 0

1 2 3  ( ) ( , ) ( )
i

z y ze    U R R R   (67) 

where ii

i e



σ

R  ( ,i y z ) are the rotation operators, we need to demonstrate 

rotations of the qubit Bloch vector about the z and y axes by applying various 

sequences of external pulses. The decomposition in Eq. 67 plays an important role 

in circuit-based quantum computing, as it shows explicitly that 2 single-qubit 

operations allow us to create the arbitrary state of the qubit. Here we show how 

this can be accomplished by controlling the parameters of the external pulses, 

which are defined by the explicit form of the evolution operator (see Eq. 50). 

There are 2 distinct ways of the implementation of rotation, depending on which 

part of the total qubit phase we employ: dynamical or geometrical. Quantum gates 

relying on geometrical quantum phases are called holonomic gates, and they are 

expected to be robust with respect to noise.16,17  

To implement the rotation of the Bloch vector about the z axis (the phase gate) 

based on the geometrical phase, we can use the evolution operator of the resonant 

qubit, Eq. 50. The product of 2 evolution operators corresponding to the sequence 

of 2 π pulses with the relative phase        gives 

 ; ;0

0
( ) ,

0

i

z i

e

e



    
  


  

 
R U U   (68) 

where the first subindex of U indicates the pulse area, ( )S T , and the second one 

indicates the phase,  . 

Figure 21 shows the Bloch vector trajectories of the qubit basis states | 0  and |1 ,  

which correspond to the angles 0   and    in Eq. 57 and the Bloch vector 

initially pointing in z  and z  directions while the vector 1 ( ,0,0)e Ω  is 

pointing in x  direction. For simplicity, we chose 0   for the first  -pulse. 

The first  -pulse flips the population to the state |1  ( | 0 ); correspondingly, the 

Bloch vector turns about the effective field vector 1Ω  (about the x  axis), and it 

stays in the ,y z plane all the time and points in the z  ( z ) direction at the end of 
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the pulse. Because of the second  -pulse, the population is transferred back to the 

initial state | 0  ( |1 ); therefore, the Bloch vector returns to its original position 

pointing along the z  ( z ) axis. However, since we chose       for the 

second  -pulse, the pseudo-field vector is rotated counterclockwise by the angle 

   in the ,x y plane, 2 ( cos , sin ,0)e e   Ω , and the Bloch vector moves 

in the plane perpendicular to the ,x y plane and has the angle / 2   

( / 2 )    with the ,x z  plane. 

 
Fig. 21 The Bloch vector trajectory for the qubit state | 0  in panel (a) and the qubit state 

|1  in panel (b) generated by the sequence of 2  -pulses with the relative phase    

The Bloch vectors representing a pair of orthogonal basis states | 0  and |1  

follow a path enclosing correspondingly solid angles of 2  and 2 . The 

geometrical phase is equal to one-half of the solid angle, which means the basis 

states | 0  and |1  gain phases   and  , and the evolution operator takes the 

form of the phase gate, Eq. 68, with the relative phase controlling the phase of the 

gate. 

The rotation operator about the y  axis can be constructed using 3 pulses. The first 

and third pulse is / 2 -pulse with 0  , while the second pulse is  -pulse with 

the relative phase   . It is easy to show, using Eq. 50, that this 3-pulse 

sequence results in 

 
 

;
;0 ;0

2 2

 ) . ( yi

y e


      
σ

R U U U   (69) 

To demonstrate the geometrical nature of the ( )y R  operation, we use the fact 

that it creates the relative phase between the qubit basis states 

| (| 0 |1 ) / 2i i      . In the Bloch representation, these states have the form 

 2| cos | 0 sin |1 ,
4 4

i

i e


   
        

  
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which are 2 vectors defined by the angles / 2   and / 2    and pointing 

in the y  and y directions, as shown in Fig. 22. The trajectory of the Bloch 

vector representing the states | i   is shown in Fig. 22. The pseudo-field vectors 

1Ω  and 3Ω  are defined by the effective Rabi frequencies of the first and third 

pulses and are pointing in the x  direction since 0  . The second pseudo-

field vector 2Ω  is rotated counterclockwise by the angle    in the ,x y plane, 

the same as in the case above. The initial Bloch vector is pointing in the y  ( )y  

direction. The first / 2 -pulse rotates the Bloch vector about 1Ω  to the position 

of the state |1  ( | 0 ). The second pulse flips the direction of the Bloch vector. 

The third / 2 -pulse returns the Bloch vector to its original position. The Bloch 

vector and the pseudo-field vector are orthogonal during the whole evolution. 

Similar to the previous case, we observe that the basis states | i  and | i   follow a 

path enclosing correspondingly solid angles of 2  and 2 . Therefore, they gain 

the relative phase 2 , which is the geometrical phase defined by the relative 

phase between pulses. It is easy to show that the phase gate in the | i   basis is 

equivalent to the ( )y R  gate in the | 0 ,|1   basis. 

 

Fig. 22 The Bloch vector trajectory for the qubit state | i  in panel (a) and the qubit state 

| i   in panel (b) generated by the sequence of 2 / 2 -pulses and one   pulse with the 

relative phase    

3.8 Rotation in the Bloch Representation 

Rotation operations in the Schrödinger picture are 

 0| | ,i   R   (70) 

where { , , }i x y z ,  0|   is the initial wave function, 
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Therefore, for the density matrix, we have 

 1 1

0 0 0| | |   | ,i i i i

      ρ R R R ρ R   (71) 

where 0 0 0| |  ρ  is the initial density matrix. 

Using equation 

  [ ] [ ], [ ], [ ] ( , , , )  x y zTr Tr Tr Tr u v w  B σ σ σ ρσρ ρ ρ    

we find the following expressions for the transformation of the Bloch vector 

components 

 1

0[ ],x i iu Tr  σ R Rρ    

 1

0[ ],y i iv Tr  σ R Rρ    

 1

0 .[ ]z i iw Tr  Rσ Rρ    

We obtain 
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The evolution operator in the Bloch representation is 
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Therefore, to demonstrate, for example, the zR  rotation in the Bloch picture, we 

see that the first   pulse with the relative phase 0   gives for the evolution 

operator 

 

 ;0

1 0 0

0 1 0 .

0 0 1






 


  

U   (76) 

The second   pulse with the relative phase       gives for the evolution 

operator 

 

   

   ;

cos 2( ) sin 2( ) 0

sin 2( ) cos 2( ) 0 .

0 0 1

  

   

   

   


     
  

U   (77) 

Finally, the sequence of ;  U  and ;0U  results in 

 

   

   

   

   

; ;0

cos 2( ) sin 2( ) 0 1 0 0

sin 2( ) cos 2( ) 0 0 1 0

0 0 1 0 0 1

cos 2 sin 2 0

sin 2 cos 2 0 ,

0 0 1

   

   

   

 

 



    
 

      
     




  
 
 

U U

  

(78)

 

Similarly, one could consider the yR  rotation in the Bloch picture. 

3.9 Generalization of the Single-Qubit Operation Using Bright-
Dark Basis 

In the previous sections, we have considered several excitation schemes of the 3-

level system and discussed a possible implementation of single-qubit gates. It was 

shown that all possible qubit states can be created in a controllable fashion using a 

couple of completely overlapped laser pulses, ( ) ( )P St t  . In this section, we 

present a more general solution, which allows some additional flexibility in terms 

of the ratio of the pump and Stokes pulse amplitudes. Again, we address here the 

coherent Raman excitation in a 3-level  -type system consisting of the 2 lowest 

states of electron spin | 0 | X      and |1 | X     coupled through an intermediate 

trion state | T   (see Fig. 17) and assume that the trion state is far off-resonance 

with the external fields. In addition, we restrict our consideration to the 
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nonimpulsive regime and can then put ( ) ( ) 0P St t     in Eq. 22 so that the 

Hamiltonian takes the form 

 

.
1 1

* *

* *

0 0 0 0 0

0 2 0 0
2

2 0 0

0 0

0 2( )
2

  

2

 

,

 RWARWA RWA RWA
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B S

P S T P

P

B S

P S P

i

 

 
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 





 





 

 

   
  

     
  

      

 


    


     

H U H U U U
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where 

P T P    ,
  

P S     ,
 

( )

0( ) Pi t

P P t e 

  ,
  

( )

0( ) Si t

S S t e


  , and
  

2

, , ,( ) / 2P S P S P St t    . 

Let us consider the case when 0 0( ) ( )cosP t t    and 0 0( ) ( )sinS t t    and 

keeping the same time-dependent envelope for the pump and Stokes Rabi 

frequencies while the mixing angle  controls the ration between the maximum of 

the Rabi frequencies. 

In the bright-dark basis, the Hamiltonian takes the form 

 

2

0

1 2

0

* *

0 0

2 2 ( ) ( )

2 2 ( ) ( ) ,
2

( ) ( ) ( ) ( ) 2

i

i i

bd bd

i

P

S SCe t t

SCe C e t SC t

t t e t SC t



 



  

  

 



 













 

  


   
     

H R HR   (80) 

where  

sinS  ,  

cosC  ,  

P S     ,  

2 2/2 2 /2 2( ) i t i tt e C e S    , and 
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2 2/2 /2( ) i t i tt e e    . 

In the resonant case, 0  , we obtain 

 

0

1

0

* *

0 0

0 0 ( ) ( )

0 0 ( ) ( )
2

( ) ( ) ( ) ( ) 2

 .  i

bd bd

i

P

t t

e t SC t
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







 













 

  


  


     

RH H R    

In the case of equal chirp rates,   , we have 

 

2

2

2 /2

0

1 2

/2

0

2 2 ( )

2 2 0 .
2

( ) 0 2

i i t

i

bd bd

i t

P

S SCe e t
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e t

 





 

 











  


  


   

H R HR    

In the 2-photon resonance case, 0  , and equal chirp rates,   , we have 

 

2

2

/2

0

1

/2

0

0 0 ( )

0 0 0 .
2

( ) 0 2

i t

bd bd

i t

P

e t

e t









  


  


   

H R HR    

We can see that ( ) (0)D Da t a , and we are left with the system of 2 differential 

equations for the probability amplitudes ( )Ba t  and ( )b t . Making the adiabatic 

elimination of the excited state | T   (assuming that ( ) 0b t  ), we have 

 

 
2 /2

0

1
( ) ( ) ( ),

2

i t

B

P

b t t e a t 


   

and 

 2

0

1
( ) ( ) ( ).

4
B B

P

ia t t a t  


   

The solution is 

 
2
0

0
( )

4( ) (0) .

t

P

i
t dt

B Ba t a e

 
 

    

Therefore, the evolution operator for the 2-photon resonant excitation by the 

equally chirped pulses under condition of the adiabatic elimination of the trion 

state has the following form: 
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where 2

0
0

( ) ( ) / (4 )
t

PS t t dt    , and P S     . 

For the qubit states, the evolution operator can be written as 
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where 

           cos sin 2 ,sin sin 2 , cos 2 .        n    

3.10   Electron Spin in a Quantum Dot as a Qubit  

In the previous sections, we developed several methods of an arbitrary 

manipulation of a qubit wave function using the geometric phase. Now we apply 

the proposed scheme to electron spin states in a charged quantum dot. Because of 

quantum confinement, the state of the electron can be expressed as a product of 

the Bloch function and an envelope function, which has a typical scale of the 

quantum dot size, a few nanometers. The energy level structure and optical 

selection rules have been discussed in the literature.12–15 A commonly accepted 

energy level structure comprises 4 levels: the 2 electron spin states and 2 trion 

spin states. Figure 23 shows 2 arrangements of the energy levels and polarization 

selection rules, which provide a possibility of optical control for the electron spin 

qubit. 
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Fig. 23 Optical selection rules in different bases: (a) the mixed basis is used, where the 

electron spin states are in the x basis while the trion states are in the z basis; (b) coupling 

scheme is in the x basis. 

 

The usual experiment of the electron spin control is performed at low temperature 

( ~ 1 K). An external magnetic field in the Voigt configuration (of order 2 7  T) 

is applied along the x axis, perpendicular to the sample growth direction, the z  

axis. Zeeman splitting of the electron and trion spin states is on the order 10e   

meV and 10h  eV, correspondingly. At these conditions, taking into account 

the optical selection rules, the 4-level system can be considered as a double  -

system. This coupling scheme is shown in Fig. 23b, where we indicated by H and 

V the optical field couplings with the orthogonal polarization. The shown 

coupling scheme is in the so-called x basis. 

An alternative arrangement is depicted in Fig. 23a. In this case the mixed basis is 

used, where the electron spin states are in the x basis while the trion states are in 

the z basis. Using the 2  
 or  

 polarized fields, one can couple the electron 

spin states | X  and | X  , as shown in the Fig. 23a. This is the case where our 

3-level model can be implemented. The corresponding Hamiltonian has the form 

obtained in Eq. 48. Assuming large detunings of the pump and Stokes field 

frequencies from the transition frequencies to the trion state | T  , after the 

adiabatic elimination of the trion state, for the case of completely overlapped, 

identically linearly chirped pump and Stokes pulses, we obtain the following 

Hamiltonian 

 
*

( )
,

2 ( )

i

e

i

e

t e

t e











 

 
  

  
H   (83) 



 

49 

where e    , and P S     , ( ) 2

0 0( ) ( ) ( )[1 ] / (2 )i t

e P St t t e          

is the effective 2-photon Rabi frequency, T P    , and P S     . Note that 

here we have used 0 1T T  . 

Now we show that the contribution of this oscillating term can be neglected when 

the pulse duration is longer than 1 1

e    . To demonstrate this and justify the 

procedure of the adiabatic elimination of the trion state, we numerically solve the 

time-dependent Schrödinger equation with the Hamiltonian in Eq. 48. That is, we 

compare our analytic solution with the exact solution of the Schrödinger equation 

without the adiabatic elimination approximation. An example of the comparison 

is shown in Fig. 24. 

 

 

Fig. 24 The population dynamics of the resonant qubit states with (dotted lines) and 

without (solid lines) adiabatic elimination of the trion state in the 3-level system. The 

excitation is generated by the sequence of 2 pairs of   pulses (Gaussian pulse envelops) with 

the relative phase / 2   . 

The example in Fig. 24 shows the dynamics of the population of the resonant 

qubit excited by a sequence of 2 pairs of linearly chirped pulses with the relative 

phase between the pairs being / 2  . The parameters of the excitations are the 

transform-limited pulse duration 0 100   fs, the pulse area of the pump and 

Stokes pulses is equal to  , liner chirp rate 2

0/ 20   , 0 6  , 0 1e   , the 

ratio between the maximum Rabi frequency and the single-photon detuning 

0 / 0.77   . We observe a negligibly small amount of population in the trion 

state | T   at the intermediate time. The presented comparison also demonstrates a 

reasonable agreement between the proposed control schemes and the exact 

numerical solution. Note that the total time for the qubit operation in Fig. 24 is on 

the order of 25 ps, which is much shorter than the typical lifetime of the trion state 

as well as the time scale of other forms of decoherence, such as that induced by 

the electron-phonon interaction. 
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3.11  Possibility to Realize Geometric Gates Using Nitride 
Structures 

We presented the analytic expression of the evolution operator of the electron spin 

in a quantum dot, which provides a clear geometrical interpretation of qubit 

dynamics. Using the analytic form of the evolution operator, we proposed a set of 

single-qubit rotations that are solely based on the geometrical phase. Our proposal 

combines the pulse area control with the adiabaticity by using chirped pulses. To 

estimate the time scale of the proposed operation, we can use the 100-fs pulses, 

which become picosecond pulses after linearly chirping. That amount of chirping 

is sufficient to provide adiabatic excitation26 and can be readily produced 

experimentally using commercially available laser systems. Using parameters of 

the dipole moments 0 , 1 200T T   D available in InGaN/GaN,27 GaN/AlN28,29 

quantum dots, and detuning 5   meV, we estimate the peak amplitude of the 

pulses on the order of 
6 710 10  V/m. The demonstrated adiabatic manipulation of 

a qubit using only the geometric phase has some advantages, since it reduces the 

requirements of perfect tuning of the control field parameters and is significantly 

more robust against noise.19,20 

4. Conclusions 

We have shown that we can explain the kinetics of the photoexcited carriers in 

GaN and ZnO by including only carrier–carrier and carrier–phonon interactions 

and a relatively simple 2-band electronic structure model. Furthermore, we have 

presented a detailed analysis of the effect of different dephasing machanisms on 

the carrier kinetics. Finally, we have experimentally measured and simulated 

using our theoretical model the temperature and pulse-power dependence of the 

photoluminescence spectra. We have found that carrier–carrier scattering is a 

principal dephasing mechanism in bulk GaN and ZnO for excitations below the 

LO phonon energy above the band edge. The coherent optical control of 

electronic excitations in these materials will require confined geometry, e.g., a 

quantum dot heterostructure, that will allow us to reduce the available density of 

final states in scattering processes. Our theoretical investigation shows the 

possibility to realize geometric quantum gates using nitride quantum dots. 
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